

UNIVERSAL EDUCATION CENTRE JAYANT SHARMA (94145-37474)

www.uecj4u.hpage.co.in

Time 3 to $3\frac{1}{2}$ Hrs

Maths 9^{TH} (Term 1)

M.M. 90

SECTION – A

Question numbers 1 to 8 carry one mark each. For each questions, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1.
$$\frac{P}{q} \text{ form of the number 0.3 is :}$$
(A) $\frac{3}{10}$ (B) $\frac{3}{100}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$
2. Which of the following is a cubic polynomial ?
(A) $x^3 + 3x^2 - 4x + 3$ (B) $x^2 + 4x + 7$
(C) $3x^2 + 4$ (D) $3(x^2 + x + 1)$
3. If a polynomial $f(x)$ is divided by $x = a$, then remainder is
(A) $f(0)$ (B) $f(a)$ (C) $f(-a)$ (D) $f(a) - f(0)$
4. What is the remainder when $x^3 - 2x^2 + x + 1$ is divided by $(x - 1)$?
(A) 0 (B) -1 (C) 1 (D) 2
5. In the figure below if AB AC, the value of x is :
(A) 55° (B) 110° (C) 50° (D) 70°
6. If ΔABC is congruent to ΔDEF by SSS congruence rule, then :
(A) $\angle C < \angle F$ (B) $\angle B < \angle E$
(C) $\angle A < \angle D$ (D) $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$
7. The area of an equilateral triangle is $16\sqrt{3}$ m². Its perimeter (in metres) is:
(A) 12 (B) 48 (C) 24 (D) 306
6. The base of a right triangle is 15 cm and its hypotenuse is 25 cm. Then its area is :
(A) 12° (B) 375 cm^2 (C) 150 cm^2 (D) 300 cm^2
5. Simplify $\left(\frac{64}{125}\right)^{-\frac{7}{2}}$
10. If $(x - 1)$ is a factor of the polynomial $p(x) = 3x^4 - 4x^3 - ax + 2$ then find the value of $x'a'$?
11. Simplify: $(\sqrt{5} + 2)(\sqrt{5} - 2)$
12. In the given figure, find the value of x .

13. In the figure, OA = OB and OD = OC. Show that (i) $\Delta AOD \cong \Delta BOC$ (ii) AD ||BC

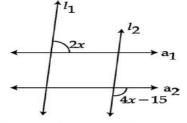
An exterior angle of a triangle is 120° and one of the interior opposite angles is 40°. Find the other two angles of a triangle.

A point lies on x-axis at a distance of 9 units from y-axis. What are its coordinates ? 14. What will be the coordinates of a point if it lies on y axis at a distance of -9 units from x-axis ?

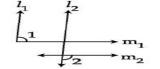
> Section-C Question numbers 15 to 24 carry three marks each.

15. Find the value of
$$\left(\frac{64}{125}\right)^{-\frac{2}{3}} + \frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}} + \frac{\sqrt{25}}{\sqrt[3]{64}}$$
.

Represent $\sqrt{3}$ on number line.


- Prove that $\frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} + \frac{1}{2-\sqrt{5}} = 0$. 16.
- 17. Factorise : $x^2 + \frac{x}{4} - \frac{1}{8}$.

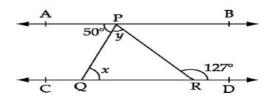
OR


What are the possible expressions for the dimensions of a cuboid whose volume is given below ? $Volume = 12ky^2 + 8ky - 20k.$

- 18. If x = 2y + 6 then find the value of $x^3 - 8y^3 - 36xy - 216$.
- 19. In $\triangle ABC$, $\angle B = 45^{\circ}$, $\angle C = 55^{\circ}$ and bisector of $\angle A$ meets BC at a point D. Find $\angle ADB$ and $\angle ADC$. OR

In the figure below, $l_1 || l_2$ and $a_1 || a_2$. Find the value of *x*.

20. In the figure below, $l_1 \parallel l_2$ and $m_1 \parallel m_2$. Prove that $\angle 1 + \angle 2 = 180^\circ$.



In the given figure, AB = AC, D is the point in the interior of Δ ABC such that 21. \angle DBC = \angle DCB. Prove that AD bisects \angle BAC of \triangle ABC.

- In the given figure, AB = BC and AD = EC. Prove that $\triangle ABE \equiv \triangle CBD$. 22.
- In the given figure, if AB||CD, APQ = 50° and PRD = 127° , find x and y. 23.

JAYANT SHARMA (94145-37474), send your queries to: uecclasses@gmail.com Visit us at: http://www.uecj4u.hpage.co.in © 2014

24. The perimeter of a triangular field is 300 cm and its sides are in the ratio 5 : 12 : 13. Find the length of the perpendicular from the opposite vertex to the side whose length is 130 cm.

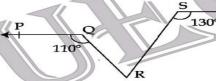
Section-D

Question numbers 25 to 34 carry four marks each.

25. Find the values of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}} = a + \sqrt{5}b$

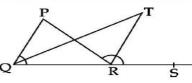
Evaluate after rationalizing the denominator of $\left(\frac{25}{\sqrt{40} - \sqrt{80}}\right)$. It is being given

that
$$\sqrt{5} = 2.236$$
 and $\sqrt{10} = 3.162$

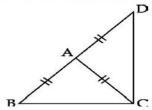

26. Simplify:
$$\frac{1}{2+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}}$$

27. Prove that: $(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3$

$$= 3 (a + b) (b + c) (c + a) (a - b) (b - c) (c - a)$$


- **28.** If remainder is same when polynomial $p(x) = x^3 + 8x^2 + 17x + ax$ is divided by (x+2) and (x+1), find the value of *a*.
- **29.** Find α and β, if (x + 1) and (x + 2) are factors of $x^3 + 3x^2 2\alpha x + \beta$. **OR**

Factorize : $x^3 - 3x^2 - 9x - 5$.


- **30.** Plot the points A (4, 0) and B (0, 4). Join AB to the origin O. Find the area of ΔAOB .
- 31. In the given figure, if PQ||ST, \angle PQR = 110° and \angle RST = 130° find \angle QRS.

32. In the given figure, the side QR of Δ PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

- **33.** ABCD is a parallelogram. If the two diagonals are equal. Find the measure of $\angle ABC$.
- 34. In figure, ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that BCD is a right angle.

